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Abstract

The transformation of the RGB colour space to a hue, saturation and brightness colour space
is essentially a conversion from a rectangular coordinate system to a cylindrical coordinate
system. Nevertheless, a bewildering array of such conversions exist. We show that one
of the main reasons for this is the dependence of the saturation values on the choice of
the brightness function, and suggest a definition of saturation which is independent of the
brightness. The usual ways of calculating brightness and hue are reviewed. Lastly, we
examine some of the characteristics of the cylindrical colour coordinates and give a simple
example in which the suggested cylindrical colour coordinates are used.

1 Introduction

The transformation of the RGB colour space to a hue, saturation and brightness colour space is
essentially a conversion from a set of rectangular coordinates to a set of cylindrical coordinates.
One could therefore ask how such a seemingly simple procedure could have given rise to the
plethora of such transformations described in the literature, such as HSV [10], HSI [4], Triangle
[10] and HLS1. It is shown in this article that in the definitions of these spaces, the saturation
values obtained depend intimately on the expression chosen for calculating brightness, even
though it is usually claimed that the saturation and brightness measures are independent. We
then propose a definition of the saturation which is completely independent of the brightness
function, and which therefore allows the free choice of the brightness function most suited to
the task at hand. In order to complete the description of the space, we review the methods used
to calculate brightness and hue, and we examine some of their characteristics.

Why, it may be asked, is such a colour representation space necessary? Surely it is better
to use a standardised colour space such as the CIE L*a*b* space or its cylindrical coordinate
version. The obvious objection to the use of the L*a*b* space is that one needs calibration

1The transformations to and from these spaces and some others are summarised by Shih [9].
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information on the image which is being transformed from the RGB space, namely the colour
coordinates of the source of illumination (the white point). This information is not always
available for the images that are encountered in computer vision applications. If we do not have
the necessary information, might it not be better to avoid making assumptions and estimations,
and to use an alternate and more intuitive coordinate system for representing the information
that is known, namely the coordinates of the colours in the RGB space.

We begin with a discussion of the existing cylindrical coordinate colour representations
(section2), followed by a discussion and derivation of the suggested representation (section3).
In section4, we present some of the characteristics of this representation. Finally, a simple
example of its use is given in section5.

2 Discussion of the existing transforms

In the RGB space, colours are specified as vectors(R,G,B) which give the amount of each
red, green and blue primary in the colour. For convenience, we takeR,G,B ∈ [0, 1] so that the
valid coordinates form the cube[0, 1]× [0, 1]× [0, 1]. The basic idea behind the transformation
to a hue, saturation and brightness coordinate system is to place a new axis between(0, 0, 0)
and(1, 1, 1), and to specify the colours in terms of cylindrical coordinates based on this axis.
The new axis passes through all the achromatic or grey points (i.e. withR = G = B), and will
therefore be referred to as theachromatic axis. Thebrightnessgives the coordinate of a colour
on this axis, thehuecorresponds to the angular coordinate and thesaturationcorresponds to the
distance from the achromatic axis.

One of the causes of the variety of such spaces is the number of different definitions of
brightness. These definitions lead to spaces which have shapes which are not simply con-
structed as a pile of planar cross-sections of the cube taken perpendicular to the achromatic
axis. Further problems with the existing transforms are due to them originally being developed
for the easy numerical specification of colours in computer graphics applications [10]. Due to
the associated brightness functions, the “natural” shape of the HSV space is a cone, and of the
HLS space, a double cone. A vertical slice through the achromatic axis of each of these spaces
is shown in figures1a and1c. The problem with using these representations when specifying a
colour is that there are large regions which lie outside the cones. In order to avoid complicated
verification of the validity of a specified colour, these spaces were often artificially expanded
into cylinders by dividing the saturation values by their maximum possible values for the corre-
sponding brightness. Slices of the cylindrical versions of the HSV and HLS spaces are shown in
figures1b and1d. The cylindrical versions have often been carried over into image processing
and computer vision, for which they are ill-suited.

We now consider two cases of the confusion that the cylindrical forms can cause. Demarty
and Beucher [3] applied a constant saturation threshold in the cylindrical HLS space (figure1d)
to differentiate between chromatic and achromatic colours. This threshold can be represented
by a vertical line on either side of the achromatic axis in figure1d, and it is clear that this does
not correspond to a constant saturation. Demarty [2] later improved the threshold by using a
hyperbola in the cylindrical HSV space (figure1b), which corresponds to a constant threshold
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(a) Conic HSV (b) Cylindrical HSV (c) Bi-conic HLS (d) Cylindrical HLS

Figure 1: Slices through the conic and cylindrical versions of the HSV and HLS colour spaces.
Colours to the right of the central achromatic axis have hues of0◦, and colours to the left have
hues of180◦.

in the conic HSV space (figure1a). Smith [11] makes the assumption that the cylindrical HSV
space is perceptually uniform when a Euclidean metric is used, but upon examining figure1b,
one sees that a certain distance in the high brightness (top) part of the space corresponds to a far
larger perceived change in colour than the same distance in the low brightness part of the space.

3 Derivation of a useful hue, saturation and brightness space

In this section, we examine a derivation of a cylindrical coordinate system in the RGB space,
pointing out the choices which could (and have) lead to characteristics which are disadvanta-
geous, and ending up with a cylindrical coordinate representation of the RGB space which is
useful for computer vision. This derivation is based on the derivation of a Generalised Light-
ness, Hue and Saturation (GLHS) model [7] suitable for computer graphics applications.

3.1 Brightness

In order to conform to the terminology suggested by the CIE, we call a subjective measure of
luminous intensity thebrightness. The brightness function of the GLHS model is

L (c) = wmin ·min (c) + wmid ·mid (c) + wmax ·max (c) (1)

in which the functionsmin (c), mid (c) andmax (c) return respectively the minimum, median
and maximum component of a vectorc in the RGB space, andwmin,wmid andwmax are weights
set by the user, with the constraintswmax > 0 andwmin + wmid + wmax = 1. Specific values
of the weights give the brightness functions used by the common cylindrical colour spaces:
wmin = 0, wmid = 0 andwmax = 1 for HSV; wmin = 1

2
, wmid = 0 andwmax = 1

2
for HLS; and

wmin = 1
3
, wmid = 1

3
andwmax = 1

3
for HSI.

The luminanceis the radiant intensity per unit projected area weighted by the spectral sen-
sitivity associated with the brightness sensation of human vision [8]. This objective measure
takes into account the fact that if one looks at red, green and blue light sources of the same
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radiant intensity in the visible spectrum, the green will appear the brightest and the blue the
darkest. The luminance function which corresponds to contemporary video displays is [8]

Y (c) = 0.2125R + 0.7154G+ 0.0721B (2)

In the RGB space, we can visualise surfaces of iso-brightness (or iso-luminance). The
surfaces of iso-brightnessl contain all the points such thatL (c) = l and intersect the achromatic
axis atl. For the HSV and HLS spaces, these surfaces have a complicated shape (see [7] for
details), and for the HSI space these surfaces are planes perpendicular to the achromatic axis.
The surfaces of iso-luminance (equation2) are planes oblique to the achromatic axis.

3.2 Hue

The hue angle is traditionally measured starting at the direction corresponding to pure red. The
simplest way to derive an expression for this angle is to project the vector(1, 0, 0) corresponding
to red in the RGB space and an arbitrary vectorc onto a plane perpendicular to the achromatic
axis, and to calculate the angle between them. This gives the expression

H ′ = arccos

[
R− 1

2
G− 1

2
B

(R2 +G2 +B2 −RG−RB −BG)
1
2

]
(3)

after which, in order to give a value ofH ∈ [0◦, 360◦], we apply

H =

{
360◦ −H ′ if B > G
H ′ otherwise

(4)

An approximation to this trigonometric expression is often used, and it is shown in [7]
that the approximated value differs from the trigonometric value by at most1.12◦. A further
comparison between the trigonometric hue and the approximated hue is given in section4.

3.3 Saturation

For the derivation of an expression for the saturation of an arbitrary colourc, we begin by
looking at the triangle which contains all the points with the same hue asc, as shown in figure2.
The intersection of this triangle and the iso-brightness surfaces are lines parallel to the line
betweenc and its brightness value on the achromatic axisL (c) = [L (c) , L (c) , L (c)].

Traditionally, the saturation is calculated as the length of the vector fromL (c) to c divided
by the length of the extension of this vector to the surface of the RGB cube. This definition,
however, results in colour spaces in the form of cylinders discussed in section2. Moreover, it
is clear that this definition of the saturation depends intimately on the form of the brightness
function chosen (i.e. on the slopes of the iso-brightness lines). An example of this dependence
is shown in figure3, in which the saturation of figure3a is shown in figure3b for the HSV
space and figure3c for the HLS space. In the original image, not all the pixels which appear
white have RGB coordinates of exactly(1, 1, 1). The slight variations in these RGB values are
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Figure 2: The triangle which contains all the points with the same hue asc. The circled corners
mark the edges of the cube containing the points furthest away from the achromatic axis.

amplified by the artificial expansion of the cones into cylinders, leading to the noisy regions
in the saturation images and clearly demonstrating the dependence of the saturation on the
brightness function.

In order to keep the conic or bi-conic forms of the spaces, it is necessary to change the
definition of the saturation. Instead of the definition given above, we divide the length of the
vector fromL (c) to c (in figure2) by the length of the vector betweenL [q (c)] andq (c), that
is, the longest vector parallel to[L (c) , c] included in the iso-hue triangle, the vector which
necessarily intersects the third cornerq (c) of the triangle. We then end up with the following
expression for the saturation

S =
‖L (c)− c‖

‖L [q (c)]− q (c)‖
(5)

which is independent of the choice of the brightness function. This independence can be shown
by using similar triangles [6]. An example of this saturation measurement is shown in figure3d,
where it should be compared to the corresponding HSV and HLS examples. The most visible
improvement resulting from this definition is that both the white and black regions of the colour
image are assigned a low saturation value.

The points the furthest away from the achromatic axis are those on the edges of the RGB
cube between the circled corners in figure2. These points correspond to the most highly sat-
urated colours, and if we project them onto a plane perpendicular to the achromatic axis, they
form the edges of a hexagon, which correspond to the maximum distance a point can be from
the achromatic axis for a given hue. A simpler expression for the saturation of pointc can be
obtained by projecting it onto this hexagon, and dividing the distance of the projected point
from the centre of the hexagon by the distance from the centre to the hexagon edge at the same
hue value.

3.4 Chroma

Carron [1] suggests the use of the distance of a point from the achromatic axis without the
maximum distance normalisation as an approximation to the saturation, which he callschroma.
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(a) Colour image (b) Cylindrical HSV (c) Cylindrical HLS

(d) SaturationS (e) ChromaC (f) S − C

Figure 3: (a) “Le Chanteur” by Joan Mirò, with the bottom half inverted (by subtracting the
values in the three colour channels from255). The cylindrical saturation is shown in (b) for
the HSV space and (c) for the HLS space. The brightness-independent (d) saturation and (e)
chroma are shown, as well as (f) the difference between images d and e (contrast-enhanced).

This distance is multiplied by a constant so that for the six vertices of the projected hexagon, the
chroma has a value of one. An example of the chroma is shown in figure3e, and the difference
between the chroma and the saturation images is shown in figure3f (the contrast has been
enhanced for better visibility, the maximum pixel value in the image is0.107). The maximum
possible difference between a saturation and a chroma value for a colour is0.134.

3.5 Summary of the transform

A simple method to calculate the luminance, trigonometric hue, chroma and saturation coordi-
nates is given here, based on the one suggested by Carron [1]. The changes with respect to the
version given by Carron are the extension to calculate the saturation from the chroma, and the
use of luminance instead of brightness. The first step is Y

C1

C2

 =

 0.2125 0.7154 0.0721
1 −1

2
−1

2

0 −
√

3
2

√
3

2

 R
G
B

 (6)

followed by the calculation of the chromaC ∈ [0, 1]

C =
√
C2

1 + C2
2
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and the hueH ∈ [0◦, 360◦]

H =


undefined if C = 0
arccos

(
C1

C

)
if C 6= 0 and C2 ≤ 0

360◦ − arccos
(
C1

C

)
if C 6= 0 and C2 > 0

and, if required, the saturationS ∈ [0, 1]

S =
2C sin (120◦ −H∗)√

3

in which

H∗ = H − k × 60◦ wherek ∈ {0, 1, 2, 3, 4, 5} so that 0◦ ≤ H∗ ≤ 60◦ (7)

The inverse of this transform is easily derived.

4 Characteristics of the space

In this section we examine the distributions of the hue, saturation, chroma and brightness coordi-
nates for a transformation of a set of points equidistantly spaced in the RGB space to completely
fill up the cube[0, 1]× [0, 1]× [0, 1] (the distance between the points is0.01).

We begin by examining the hue using the two calculation methods available, the trigono-
metric method and the approximate method. Histograms of360 bins, with each bin correspond-
ing to one degree, were calculated (the value in bin360 is equal to the value in bin0). The
histograms for the trigonometric approach and for the approximate approach are shown in fig-
ures4a and4b respectively. The distributions are not smooth because we are calculating the
angular coordinates of points distributed on a grid, but the most striking characteristic of these
histograms are the strong peaks at each multiple of60◦. If we ignore the peaks, it appears as
if the approximate calculation gives a flatter distribution than the trigonometric calculation, for
which the hexagonal structure of the planar cross-sections of the space is clearly visible.

What causes the peaks? Their distribution at multiples of60◦ suggests that the hexagonal
shape of the planar cross-sections are the cause. The fact that we are piling up many such
hexagons to form the colour space could lead to a surplus of points in these directions forming
the exaggerated peaks. To test this, we re-calculated the histograms using only the points with
saturation values larger than0.2, which gave the histograms shown in figures4d (trigonometric
method) and4e (approximate method). By removing the interior part of the space, we have
removed the peaks for the trigonometric hue. However, they are still present for the approximate
hue, always accompanied by a one bin wide depression on either side. This demonstrates that
the approximate method has a tendency to inflate the number of points assigned hues which are
multiples of60◦.

We now look at the brightness and luminance distributions, for which histograms (with100
bins) are shown in figure4c. The brightness measure used here isL = 1

3
R + 1

3
G + 1

3
B. These

distributions do not have any particular features, and the choice is dependent on the preferences
of the user or the requirements of the application.
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Figure 4: The distributions of the hue, saturation, chroma, luminance and brightness coordinates
after a transformation from an RGB cube containing a uniform distribution of points.

We look lastly at the saturation and chroma, for which one hundred bin histograms are
shown in figure4f. The saturation distribution is regular and symmetric around0.5 due to its
normalisation coefficient. The chroma distribution, on the other hand, is very irregular because
of the distances calculated in a digital space, and descends to zero rapidly at the upper end due
to the the hexagonal form of the planar cross-sections of the space.

The choice between the use of the approximate hue or trigonometric hue, and between
chroma or saturation depends on the computing power available2. Given the computing power
on our desktops, there is no excuse for not using the accurate versions in normal image analysis
tasks. The only area in which one could consider using approximate hue or chroma are in very
high speed industrial inspection tasks where the use of trigonometric hue and saturation might
require the use of an extra DSP processor. However, a better approximation of the trigonometric
hue can be obtained by the use of look-up tables for the trigonometric functions.

5 An example

We give a simple example of the use of the suggested hue, saturation and luminance coordinates.
Figure5a is a colour image in which we wish to extract the greyish lines between the mosaic
tiles. The saturation of this image is shown in figure5b, in which it is visible that the lines to be
extracted have, in general, a lower saturation than the tiles. A morphological closing operation

2The approximate hue was introduced during the 1970’s to speed up the interactive choice of colours in com-
puter graphics programs.
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(a) (b)

(c) (d)

Figure 5: (a) The lizard image (size544 × 360 pixels). (b) The saturation of the lizard image.
(c) A morphological closing of the lizard image using a lexicographical order with saturation at
the first level. (d) The top-hat — the Euclidean distance between images a and c.

with a square structuring element of size5 × 5 pixels was applied to the initial colour image
to give figure5c. The colour vectors were completely ordered by using a lexicographical order
with saturation at the first level, luminance at the second level and hue at the third level (the
angular nature of the hues were taken into account). This closing succeeds in expanding the
tiles to cover the grey lines. Finally, a form of top-hat was calculated by taking the Euclidean
distance (in cylindrical coordinates) between figures5a and5c to give the greyscale image in
figure5d, in which the pixels of highest grey level correspond to the features we wish to extract.

This representation of the RGB space in cylindrical coordinates can be used in any ap-
plication in which one of the HLS, HSI, etc. spaces are traditionally used, ensuring that the
algorithms are not hampered by a poor representation of the data. Nevertheless, one should
remember to take into account the angular nature of the hue component [5].

6 Discussion and conclusion

A critical evaluation of the hue, saturation and brightness or luminance colour spaces is pre-
sented, spaces which are essentially representations of the RGB space in cylindrical coordi-
nates. These spaces are often used in computer vision, even though many of the suggested
transformations found in the literature are optimised for the numerical specification of colours,
and are badly suited to direct application to image processing. Two of the undesirable proper-
ties discussed are the artificial expansion of the conic or bi-conic spaces into cylinders, and the
resulting dependence of the saturation on the brightness function used.

We have presented a formulation of the saturation which is independent of the brightness
function, allowing an unconstrained choice of any brightness function (which has parallel iso-
brightness surfaces), including a psycho-visual measure of the luminance. Comparisons of the
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distributions of the cylindrical coordinates are presented, as well as a simple example which uses
the suggested cylindrical colour coordinates. This example makes use of a Euclidean distance
in the suggested colour space to approximate a morphological top-hat. It would be more correct
to calculate this difference in the L*a*b* space for which the Euclidean metric is defined, but in
which it is less easy to calculate a saturation-based morphological closing. Further applications
using the suggested colour space are given in [6], including a real-time wood colour matching
application.
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